
0. Overview
This launcher refresh (internally named “Kachemak”) is intended
to massively expand and modernize the TF2Classic launcher, and
more broadly, the user process of installing the game, and the
developer process of creating and deploying updates.

For platform support, we will fully support Windows and Linux,
including with the GUI. No features will be exclusive. Portability
has been a primary focus of the application’s design.

For updates, it reduces the downloaded size of patches to a tiny
fraction of what is currently distributed, speeding up the process
by several factors and lessening server burden.

For installation of the whole game (now done through the
launcher exclusively rather than by downloading and manually
extracting the game’s archive), the process is effectively
simplified and automated, such that the relevant folders are
autodetected, symlinks are created if the user wishes to install to
an external drive, and everything is based on simple prompts.

For downloads, Kachemak is incredibly speedy (using multiple
mirrors simultaneously), robust (can recover from any kind of
interruption with zero data loss; any corruption can be
autorepaired), flexible (users can configure support for throttling,
proxies, and more), and reliable (there is no single-point-of-
failure).

Kachemak aims to not reinvent the wheel, but to make clever use
of mature external utilities for extremely advanced functionality.
While it has a very low burden of development and maintenance,
it is far more than the sum of its parts. It is also a free-and-open-
source project, with plans to be licensed under the GPLv3 and
have community-focused development on GitLab.

It is also a project that can help the ecosystem at-large. It would
be trivial to tweak and rebrand it for other projects, such as Open
Fortress. By solving the problems that are otherwise intrinsic to
using deltas to update VPKs (which may change in unexpected
ways between game builds), it is a solution that can hopefully
empower other Source projects as well.

1. Updating
1.1 Deltas
With Kachemak, deltas will be the primary method of updating
TF2C. In preparation for an update, a selection of the largest
folders from two builds of the game will be tarred, with xdelta3
being used to generate binary delta files that contain the
differences between the tars generated from the different game
versions. In a similar manner, users will tar their local directories,
and then download a set of delta files which would be applied to
their local tars, and then unpacked again to overwrite their local
files and bring them up-to-date with the latest version of the
game.

As compared to shipping LZMA-compressed patch archives
containing all modified files, this takes up only 15% of the size,
and applies much more quickly. As compared to the Deflate-
compressed archives the current updater uses, this is less than
10% of the size. Even as assets may move between VPK files, it
can track them and move the data instead of redownloading it,
meaning that trivial patches are trivial sizes, and apply in only a
couple minutes. This can substantially lower the burden on the
servers hosting the files, as well as speed up the updating process
by many factors, among other benefits.

The purpose of deltas is to handle updating the sections of the
game that take up the largest amount of space, such as the VPKs,
maps, media, and executables. Smaller changes, such as changes
to the /cfg/ folder or any top-level files, will be handled more
directly by the updater. On a per-upgrade process, the installer
will need to access information over the web regarding smaller
files that have been added, removed, or changed, and then handle
these accordingly. A list of modified files between major builds of
the game can be generated with diff -qr , allowing
automation of this process.

We cannot efficiently delta files individually, or rely on directory-
wide delta solutions (which usually are just a nice wrapper that
still performs the former), due to the way VPKs work. Assets may
remain unchanged but move between VPK files during rebuilds of
the game. The only way for XDelta3 to recognize that textures
have moved, and to only internally relocate the data rather than
replace it, is to tar it first so it treats it as one cohesive block until
it is unpacked.

We account for user modifications to game folders by sending a
list of expected “stock” files to the launcher over the web, relative
to the game version that the user currently has. When preparing
an update, developers could generate this list, with, e.g.:

ls -d1aA maps/* > maps.txt

Which produces a file that can be read by GNU Tar when using the
-T flag. This allows to have a consistent and expected set of files
in each archive.

In terms of platform support, it has been confirmed that, with any
moderately recent version of GNU Tar, byte-for-byte hash-
identical archives can be generated on both Linux and Windows
Vista+. On Linux, the distro-supplied version can be used. On
Windows, the MSys2-built version of GNU Tar can be trivially
bundled and used by the launcher. To a large extent, this will work
even between relatively old versions of GNU Tar, providing a lot of
reliability, and the ability to use system-included versions of Tar
on Linux.

See section 8.1 for a detailed description of how the update will
likely work from a technical POV.

1.2 Fallback
Especially in its early stages of development, we cannot expect
the delta process to always be robust enough to succeed across
all the different TF2C installations. A fallback system will be
necessary. Traditional patch archives, containing all changed files
in their entireties, will be automatically generated with diff -
qr, compressed with LZMA through Pixz. The process of
downloading and applying the patch will be completely
automated.

Pixz allows generating indexed archives that are a collection of
smaller blocks, making parallel decompression possible,
massively speeding up decompression time. The filetype
internally is .tpxz, however as these utilities will be a part of the
launcher, it will be unnecessary to require users to explicitly
download any of these tools or otherwise be aware of the
process.

2. GUI
Needs more thought. Probably using PyQt5 or wxPython. This
isn’t hard to implement, at least for basic intent, but there’s a high
ceiling regarding what we can expose through the GUI (at the
most advanced level, exposing proxy and download throttling
settings).

PyInstaller can include the GUI package in the launcher’s
executable without any problems (see section 6 for more
information on distribution). PyQt5 and wxPython are both
explicitly supported by it.

3. Downloading
Our diamond jewel in this respect is Aria2. Aria2 is a command-
line download utility that, in conjunction with Metalink files,
supports segmented downloading (i.e., downloading a file from
multiple separate mirrors simultaneously), HTTP proxies for users
who may require that, customizable download/upload speed
throttling, integrated BitTorrent support, automatic file validation,
automatic corruption repairing, and IPv6.

Consider: A user with an extremely fast (and unreliable)
connection wants to download the game. As he starts
downloading, it will first start accessing a list of pre-specified
HTTP mirrors and requesting specific segments of the game’s
files. As it receives these segments, it will verify them in real-time
as they’re downloaded to ensure there’s no issue.

It will not solely use HTTP mirrors though. Simultaneously, if a
torrent is available for the same file, it will start connecting to
BitTorrent seeders and peers, and download segments of the file
through that route. All in all, it will make use of as many sources
as possible to maximize download speeds for the user, and to
naturally load-balance across all available mirrors.

This provides redundancy as well. If a mirror has failed, it will
simply ignore it. This avoids having a single point of failure,
increasing reliability and security substantially. The only real
SPOF would be in the Metalink file itself, as the mirror hosting it
could fail, or it could be compromised by an attacker that replaces
it with a malicious file. You would ideally want three separate
mirrors hosting the Metalink file, and the launcher would need to
be able to access at least two of them, and verify that they’re both
serving the same file.

I’d advise any readers to look at the Metalink website and the
Aria2 Github and README to understand the full extent of just
how powerful, robust, and efficient this combined system is. This
cements another aspect of Kachemak’s design philosophy as
well: Using external utilities wherever possible, rather than
reinventing the wheel.

4. Launching
Need to consult with the TF2C developers to figure out how this is
currently done and how it can be ported. There is obviously a
meaningful difference between launching the game from the
launcher and launching it from your Steam library, and it's
important to figure out what's happening there.

5. Game integrity checking
Aria2 will automatically verify the downloaded archive and ensure
that, at time of extraction, there is no corruption. If corruption is
represent, it will redownload only the corrupted segments.

http://www.metalinker.org/
https://github.com/aria2/aria2/blob/master/README.rst

For later verification, we can leverage the existing functionality we
use for delta updates, creating tars of various components of the
game, and then checking the hashes of those resulting tars
against what we expect. If we find corruption in one of them, we
can probably just redownload an archive containing that
component (such as texture VPKs) and extract it.

The alternative would be, for every game version, storing hashes
of every single file, and hosting that files online so they can be
redownloaded individually in case of corruption. I think this would
be a lot more effort for only a modest benefit but it’s possible if
we want to substantially reduce the download size for users who
run into corruption.

Possibly, and at the cost of keeping a permanent 3.6GB of extra
data on the user’s PC, we can just keep the full archive
downloaded instead of removing it after extraction. If there’s an
issue with corruption, we can have an autorepair that simply
checks this archive’s integrity, and re-extracts it (overwriting
existing files) if a user is having problems.

6. Launcher distribution and updates
6.1 Linux
By and large, we can use PyInstaller to pack the project into a
single executable file that contains all relevant modules. Utilities
such as XDelta3, GNU Tar, and Aria2 should come from the
distribution instead of being included, both for security and
simplification. The launcher should prompt the user to install
these items if they aren’t already installed. On major distros, we
can automatically try to install them through Apt, DNF, Zypper, or
Pacman (as applicable), otherwise if we do not recognize the
user’s distro then we should ask them to install these utilities
manually.

6.2 Windows
As with Linux, we can use PyInstaller to build a static executable
that contains everything except external utilities. We may want to
look into signing the executable to get rid of the scary warning.
We will need to distribute XDelta3, GNU Tar, and Aria2 with the
launcher. GNU Tar is available on Windows through MSys2,
requiring only a minuscule amount of additional dependencies to
make it functional. I believe the others can be built directly for
Windows.

A NullSoft installer can be included to unpack the launcher and
create a shortcut for it on the user’s desktop.

7. Installation
Ideally, with Kachemak, users will no longer download the entire
game from the website, but will instead just download the
launcher (probably through a guided NullSoft installation wizard
that will unpack the launcher’s files and create a desktop shortcut
for it).

The launcher will autodetect the user's sourcemods folder and
install into it without manual intervention. It will also need to have
a button to automatically open the game's folder, so that a user
will be able to easily find it afterwards for modding and other
purposes. On Windows, this is fairly straightforward as a registry
key exists that corresponds to a user's sourcemods folder which
we can check and act on. On Linux, it should usually be
~/.steam/steam/steamapps/sourcemods/, but this is unreliable,
particularly for users that have Steam installed through a Flatpak
or Snap. We will need to investigate better ways to autodetect the
sourcemods folder on Linux, or else just hardcode all possible
known paths, and then probe to see which one is valid. An option
for advanced users to manually choose the directory will be
necessary.

Additionally, the process of semi-automatically creating a symlink
to an external drive, on Windows or Linux, should be available for
advanced users. This will only require that the user specifies
where they want the folder to be on their external drive. Existing
sourcemods should be moved to a temporary location before
being moved to the new folder after the symlink is created, as to
prevent accidental data loss.

8. Basic layout
When run with no arguments, it shows a help screen, printing the
application version and a list of possible arguments, following
typical GNU syntax for command-line arguments. No matter
which argument is used, the launcher should always inform the
user if an update is available, along with what flag to use to install
it.

8.1 Actions
--update / -u

Checks if gameinfo.txt is present in the current directory. If not, it
informs the user to move the launcher binary it to their TF2C
directory. Later, it could be made location-agnostic if there's a
reliable way to detect Steam install location.

Access a list of text files over the web that contain, in turn, lists of
files to compress. These would exist for /maps/, /bin/, /media/,
/vpks/ (split into three based on type), and /maps/. Run GNU Tar
with all necessary arguments to make the resulting archives
reproducible, and the -T flag to use the downloaded files.

All in all, this means seven tars will be generated, seven delta files
will be downloaded, seven delta files will be applied through
XDelta3, and seven updated tar files will be unpacked in place,
with both the delta and the tar file removed after extraction is
finished. If, at any stage, a problem occurs (most likely with a
delta hash mismatch), we should give the user the option to
install an update through the fallback mechanism instead. We
should ensure that the user has at least 5GB of free hard drive
space before running this operation, to ensure there's no risk of
out-of-space errors causing unexpected problems, though it's
very unlikely we'll come close to using a major portion of that 5GB
during the upgrade.

--install / -i

Autodetect the user's sourcemods folder, if possible. If this is
impossible, error out unless a separate flag has been set
containing its path. Check the server for the most recent version
of the game and download the corresponding archive through its
Metalink via Aria2, and set it to download into a temporary
directory. Maybe look into how Debian does this with their WATCH
files as a way of checking for new releases and always getting the
most recent one in a mostly automated manner. The temporary
directory could be /tmp/ on Linux, but since it's often a RAM disk,
we should find a way to make sure it will have enough space. If
this is impossible, we can just run a check on available disk space
(should already be possible through Aria2 directly?) and
download to the hard drive (requiring enough for both the archive
and the final extracted game simultaneously), deleting the archive
after extraction is finished.

--verify / -v

Verify the sums of all game files, as elaborated in an above
section.

--version / -V

Print launcher version. Maybe check and suggest if an update's
available.

--launcher-update / -l

Update launcher to latest version, if one is available.

--start / -s

Start TF2C.

8.2 Modifiers
--path / -p

Specify path to your sourcemods folder.

--gui / -g

If/when implemented, launch Kachemak in GUI mode.

8.3 Future
1. Maybe options for manually specifying paths to dependencies
like Tar and XDelta3? If bundled, this would let a user choose
their system-wide versions instead. If not bundled, this would let
a user manually specify the path if they want to use self-compiled
versions, or if they literally aren't in the user's PATH by default.

